开放访问
Issue
yabo亚博
体积22, 2021
文章编号 36.
Number of page(s) 11.
内政部 https://doi.org/10.1051/meca/2021033
网上发布 28 May 2021

© H. Jin et al., Published by EDP Sciences 2021

许可创造性公共This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0.), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1介绍

作为连接地面和地下设施的关键交通设备,矿山葫芦与设备的安全运行直接相关,从而影响整个矿井的安全生产。制动系统是提升系统的首要任务。特别是,当发生紧急制动情况时,它在控制起重机时起着决定性作用。为了确保煤炭能源的可持续,健康和安全的发展,必须提高制动系统的技术水平,提高制动系统的响应特性[1]。

At present, the braking of mine hoists is mostly based on electro-hydraulic technology, and the hydraulic braking technology adopted is relatively mature. The research carried out by scholars from various countries has also achieved remarkable results, Zhang et al. [2] proposed that the disc brake applied in civil engineering uses the preload of the disc spring to force the piston to press the brake disc, meanwhile, make the brake pad and the brake disc contact to generate braking torque. When the pressure of hydraulic oil increasing, the brake pads move backward to realize the brake is released. Wang et al. [3] analyzed that the electro-hydraulic proportional relief valve is more stable than the traditional nozzle baffle and electro-hydraulic proportional directional valve, the model of g-bridge electro-hydraulic proportional relief valve is completed by AMESim simulation software, and the pressure characteristic curve of relief valve port is obtained. Wang et al. [4通过动态调节电动液压比例释放阀的压力,控制圆盘制动器的油压,并控制制动扭矩的尺寸,为进一步研究奠定了坚实的基础。Ungureanu等。[5] completed the measurement of the wear strength based on the initial speed of the brake rim, surface roughness and contact pressure of the brake tread, finally he improved the service life of the brake. In terms of brake friction, Kumar et al. [6]以铁、铜、黄铜为填料,制备了三种无石棉有机(NAO)摩擦复合材料。试验表明,铁粉复合材料的效果最好。王大刚等[7]研究了千米矿井提升机紧急制动时制动器的动态特性,建立了盘式闸瓦三维热力耦合有限元模型,分析了温度场对紧急制动的影响。Masoomi等人[8]提出采用具有热模量的摩擦材料来改善提升机的制动性能。Zhang等人[9] proposed a new type of disc brake and conducted an experiments with DSF sensor and PBP sensor, it showed that the real-time monitoring of DSF, PBP and other parameters have lower errors. Xu et al. [10.] have manufactured an experimental prototype of disc brake with the functions of real-time monitoring braking force and diagnosing the brake fault.

然而,传统矿井提升机的响应特性、提升效率、有效载荷率等指标已不能满足超深矿井提升机的要求。同时,液压制动系统具有复杂的液压回路[11.],并可能出现液压油泄漏和液压油变质等问题[yabo亚博12.15.]。In order to adapt to new demands, it is necessary to adopt new braking technology. The survey found that the field of aerospace [16.18.汽车和其他领域已经开展了机电制动技术研究。德国大陆Tweiss等。[19.,20.] used a motor to drive a bevel gear one-stage reduction mechanism, and then used a ball screw pair to complete the axial thrust effect. Bosch uses an electromagnetic clutch to achieve rapid feed, and a two-stage reduction gear mechanism completes the boosting of the brake shoe. Siemens VDO uses a built-in motor to directly drive the ball screw, and uses a lever booster mechanism to replace the first-level gear reduction mechanism. The Swedish company Haldex [21.] has developed a compact integrated electromechanical brake wheel module and will be used in the European Union Civil Robot Research and Development Program (SPARC). American GM, Italian Bertone, French Citroen, Japanese Denso, Advics, Nissan DENG, et al. [22.,23.] have also studied electromechanical brake actuators and developed their own prototypes. Some companies have already carried out actual vehicle tests. It can be seen from the above that electromechanical braking technology has the advantages of excellent performance, no brake fluid, rapid response, safety, environmental protection and is particularly suitable for the research of coal mine brake systems. Although the use of electromechanical braking technology is also a more feasible braking solution, from the public literature, the application of this technology in the field of mine hoist braking has not attracted enough attention from researchers.

在本文中,矿井升降机的机电制动器是基于矿井葫芦制动系统的工作原理开发的,并且从节省制动器的制造成本开始,给出了制动器的设计过程。开发了具有大负载和高响应的制动测试台。获得输出制动压力和电压和螺杆位移输出之间的关系,为未来提供了煤矿升降机机电制动的新思路。

2机电制动器的工作原理和设计开发

2.1工作原则

The structure of electromechanical brake developed in this paper is shown in图1, and design drawing is shown in图2. Electromechanical brake is mainly composed of an actuator and a parking mechanism. The actuator includes a worm gear mechanism, a ball screw mechanism and a brake tread. Parking mechanism includes a trapezoidal screw, clamping block and linear guide.

The working principle of the brake: after voltage is applied, the torque motor runs to drive the worm gear mechanism to move, realizing the deceleration and increase of force and 90° commutation of the movement. The nut in the turbine and the ball screw mechanism is fixed by a key to realize movement transmission. The movement of the nut makes the screw in the ball screw mechanism push the brake tread to move to compress the brake disc to generate brake pressure. After braking, apply voltage to the parking mechanism, and the stepper motor drives the trapezoidal screw to move, making the two clamping blocks move toward each other along the bottom linear guide to clamp the worm in the actuator.

的工作原理图the torque motor is established, According to the working principle of the brake. There are resistance and inductance inside the DC torque motor. The simplified circuit diagram is shown in图3.:

数学表达式如下:(1)

Among them,U:电枢电压;Ia: Armature current;Ra: Armature resistance;La:电枢电感;Ke:反电势系数;ωm:电动机转子的角速度。转子运行时的动态方程是:(2)(3)(4)

Among them,Te:电磁转矩;Kr:扭矩常数;Jm:电机惯性矩;θm: Motor rotation angle;Tf:电机阻尼转矩;TL:负载扭矩;Bm:电机阻尼。当电动机被锁定时,角速度为零。制动鞋对刹车盘的压力是fN,滚珠丝杠对的传输效率是ηc. 则制动盘压力与螺母推杆负载之间的关系为:(5)

(1),(2),(3),(4)and(5), we can get:(6)

Carrying out the Laplace transform of(6)得到:(7)

开环传递函数的极点位于复平面的左半部分,并在系统中加入PI控制。制动力响应曲线如所示图4.,制动力达到0.2秒内的目标压力并在目标压力下稳定,稳态误差为零。结果表明,PI控制器可以在目标值下稳定正刹车压力,为试验提供理论依据。

In order to meet the actual needs, the parameters of designed brake related parts are shown in the following表格1.

缩略图 图。1

机电制动器结构图。1.制动盘;2.制动踏板;3.夹块;4.箱体;5.蜗轮;6.滚珠丝杠副;7.步进电机;8.梯形螺钉;9.转矩电机。

缩略图 图2

机电制动器的设计图。1.线性指南。2.制动胎面。3.滚珠丝杠。4.步进电机。5.扭矩电机。6.支撑板。

缩略图 图3.

直流扭矩电动机电路图。

缩略图 图4.

Braking force response curve.

表格1

Parts parameter table.

2.2机电制动器的设计与开发

矿井葫芦的制动系统有三种结构。如图所示图5.a, a block brake that uses brake pads to press on the brake wheel to achieve braking. As shown in图5.b、 控制电动机电气状态以实现制动的电制动系统。如中所示图5.c, Disc brake system working principle is that the hydraulic oil is input from the oil inlet P to drive the piston to move to the right and compress the disc spring to complete the brake release [23.]。When the hydraulic oil is released, the disc spring is reset to push the brake. The shoe presses the brake disc to complete the braking work. Compared with the former two, the disc brake has the following advantages, so it has been widely used in mine hoisting equipment.

  • 该执行单元结构简单,易于更换和维修刹车片。

  • There is no afterburner, so there will be no difference between the left and right brakes, and it is not easy to pull to the other side due to unilateral braking.

  • 制动器具有很高的散热效果,很少引起制动器衰减。

  • 随着制动鞋磨损,制动鞋间隙可以自调节。

根据矿井提升机制动器的工作原理和煤矿安全规程规定的参数[24.[最大制动间隙不得超过2毫米,间隙消除时间不得超过0.3秒。由于超深矿井升式制动器(最正压为125 kN),使用四种机电制动器而不是薄型制动器的思想,用单个电动机械制动器输出最大制动压力33κB,2 mm制动器清关,清关消除了0.1秒的设计方向,参考图5.d要完成制动器的设计,设计流程图显示在图6.. 设计开发主要分为理论设计、选型和装配两部分。理论设计包括:基本传动方案的确定、几何参数的确定、电机选型、蜗轮蜗杆减速装置几何参数和减速比的确定、装配图的绘制,以确定整体尺寸的合理性。选择和装配主要包括每个部件采购和装配的材料选择。所设计制动器的参数如所示表2..

缩略图 图5.

Brake structure diagram. a. Block brake. b. Schematic diagram of electric braking. c. Hydraulic brake. d. Electro mechanical braking.

缩略图 图6.

制动器的设计开发过程。

表2.

制动参数。

3实验系统设计

制动实验系统主要包括致动器的电控试验和停车机​​构的电控试验。它可以显示在图7.电源系统采用AC 220 V至DC 24 V 1.5Å整流器变压器(杭州柯瑞明威电源,型号:LRS系列),电路安全受断路器空气开关保护(De Li Xi,模型HDBE)。致动器的功率由Kollmorgen伺服扭矩电动机(北京高级控制技术,型号:C024A),Kollmorgen伺服扭矩电机和Kollmorgen伺服扭矩电机驱动器(北京高控制技术,型号:AKD-0060x)和Turbo Worm(定制型号尺寸)和滚珠丝杠对(定制型号)作为驾驶模式,使用三菱系列PLC主控制模块(广州鑫峰自动化,型号:FX2N-32MT)和模拟模块(三菱电动台州市店,型号:FX2N-4AD/ 4da)控制电机以完成制动胎面和制动盘式制动器之间的接触。停车机构由步进电机和梯形螺钉驱动,左侧和右端具有相反的螺钉旋转(定制型号)和线性导轨(定制型号)和夹块(定制型号尺寸),机制的功率是由步进电机(上海郑继,J-5718HBS2401)提供,并通过PLC到步进电机问题控制指令以控制电机运行方向,然后控制机构的操作。yabo亚博当电机向前旋转时,停车将完成,停车完成当电机逆转时将结束。

The actuator in the brake is controlled by establishing the communication between the driving software (Kollmorgen Workbench) and the torque motor drive, and the communication between the programming software (GX Works 2) and the PLC, and the programming software is used to input control program into PLC. The program mainly includes controlling the enable, homing, switching between the position mode and the torque mode of the torque motor, and the forward and reverse rotation of the torque motor. When the torque motor rotates forward, the screw rod rotates, and drives the brake tread to press the brake disc to complete the braking. Conversely, the screw drives the brake disc to move away from the brake disc to release the brake. Start the control program, the brake actuator starts to work, relying on the spoke pressure sensor and the weighing display to monitor the value of the positive pressure generated by the brake in real time, and the driving software displays the displacement of the screw in real time. The parking mechanism is controlled by establishing communication between PLC and stepper motor driver, and input pulse command and direction command from PLC to stepper motor driver. Pulse command controls motor speed, direction command controls motor forward and reverse, the forward rotation of the motor drives the rotation of the trapezoidal screw, so that the clamping block clamps the worm to complete the parking, and the reverse ends the parking task. Among them, the main function address allocation of output relay Y in the programmable controller PLC is shown in表3.

考虑到在实际制动过程中,由于摩擦和热量的作用,闸瓦与制动盘之间的摩擦系数会发生变化,从而影响制动器的制动性能。同时,所设计的制动器还处于试验阶段,现场试验可能会造成安全事故。因此,实验中不考虑温度的影响。

To verify that the electromechanical brake structure and brake experimental system designed in this paper are practical and feasible. After ensuring the correct wiring of the circuit and the correct installation of mechanical parts, the brake experiment device built is shown in图8.. 根据实验条件,支撑底座(标记为图8.)设计加工,制动机构用螺栓固定在其上,轮辐传感器一端固定在支撑座上。在支撑座外安装两个锁紧螺柱,避免支撑座因正压力过大而产生过大变形,影响测量实验数据的准确性,以节省实验成本,该装置采用虎钳手动夹紧螺杆,保证螺杆在装置运行过程中不会随着螺母的转动而转动。

缩略图 图7.

机电制动实验系统示意图。

表3

I / O地址。

缩略图 图8.

Site photo of electromechanical brake test device. a. Internal control circuit. b. Electro mechanical brake.

4实验分析与讨论

在已建成的试验台的基础上,为了掌握机电制动器的基本工作特性,有必要进行试验,以便直观地了解制动器的真实工作状态,验证其是否能按设计要求正常工作。实验流程图如下所示图9..

In addition, the acceleration and deceleration of the hoist are generally controlled by the electronic control system, and the disc brake is equivalent to the auxiliary braking device. In the case of emergency braking, the hoist completely relies on disc brakes for holding brakes. The electromechanical brake developed in the article was originally designed as an auxiliary braking device, but the brake is still in the test stage, and there are still many issues that have not been considered, such as temperature effects, electromagnetic field and temperature field coupling related issues, comprehensive considerations cannot be carried out temporarily. If the field test is carried out, it may cause a safety accident, so the field test will be carried out after the brake is mature.

紧急制动时,盘式制动器会在制动盘摩擦区域产生大量摩擦热,使摩擦区域局部温度升高,产生热应力。在摩擦、热应力和制动压力的循环作用下,制动盘表面容易发生热疲劳损伤,产生热疲劳裂纹,降低制动盘的制动能力。本文设计制动器的出发点是装置能满足煤矿安全规程的最大制动力和机械要求。测试过程中使用的传感器直接测量正压力。因此,温度效应将在未来的工作研究中仔细研究。

缩略图 图9.

Experiment flow chart.

4.1 The relationship between motor current input and brake pressure output

The brake tread is in contact with the sensor before the start of the experiment, and the input voltage of the torque motor is changed by changing the analog quantity in the program, so that the brake tread pressed the pressure sensor under different input currents. The relationship between the motor current and the positive pressure of the brake is obtained. In the experiment, because of the static friction torque between the motor and the worm gear reducer, the initial operating current of the electromechanical brake reaches 3 Å, this article sets up 4 groups of experiments and takes the average value after removing the initial current from the 4 groups of experimental data. The experimental results are shown in表4..

通过观察坐标系中的实验数据的分布表明,扭矩电动机电流具有与正压力的线性关系,因此将一阶配件用于平均数据,所示的曲线示出图10.

It can be seen from图10e拟合线斜率为4.17,截距为0.62kN,拟合曲线公式如下:(8)

在公式中:F正压输出的制动,symb吗olI支架电机电流。从公式中(8),电动机电流和正压力是线性的。当电流为零时,制动力为0.62kN,当制动器胎面在实验开始之前使压力传感器接触时产生的正压力,这符合实际情况。

表4.

电机电流输入和正压输出测试结果。

缩略图 图10.

Relation curve of motor current input and output positive pressure. a. First trial. b. Second trial. c. Third trial. d. Fourth trial. e. Mean value fitting curve.

4.2螺杆位移输出与制动压力输出的关系

设计制动器制动过程包括两个parts, one is the no-load feed to eliminate the gap between the brake shoe and the brake, and the other is the contact between the brake shoe and the brake disc to achieve locked rotor. The brake disc will inevitably be deformed during the blocking process, and the amount of deformation is not easy to measure and cannot be calculated. Therefore, the relationship between displacement and brake pressure can only be obtained by fitting the data measured by the test.

在实验中,计算机通过可编程控制器PLC的指令,使转矩电机旋转,带动螺杆运动,压缩轮辐传感器。在每个实验中,控制螺钉的位移是恒定的,每个实验分5组进行。测试结果的平均值如所示表5..

通过观察实验数据在坐标系中的分布,可以看出螺杆位移与正压呈非线性关系。因此,有必要进行高阶曲线拟合,拟合过程中发现三阶拟合曲线更为真实。拟合曲线如所示图11.

The positive pressure and the screw displacement have a cubic relationship is shown in图11,拟合曲线配方如下:(9)

在公式中(9):F为制动器输出正压,X为螺杆位移,当位移为零时,正压为0.079 KN,由于零误差为0.02%,故误差可忽略不计。

表5.

Test results of lead screw displacement output and brake pressure output.

缩略图 图11.

螺杆位移与输出正压的三阶拟合曲线。

4.3最大正压试验

在最大正压试验中,伺服力矩电机接收计算机发出的位置模式指令,使制动踏板消除2 0.1毫米制动间隙 s。然后将力矩电机的运动模式从位置模式切换到力矩模式,在力矩模式下,螺杆驱动制动踏板压缩轮辐传感器,并记录显示器上显示的正压力值。它可以从方程中估计出来(8),当输出电流为7.76Å, 正压为33千牛。当输出电流为3.49Å, 正压为11.35kN。因此,制动输入电流设置为7.76Å 和2.49Å, 分别。通过试验得到了最大压力与制动时间的关系图。

It can be seen from图12当电流为2.49Å和7.76Å时,制动差距可以在0.1秒内消除,表明机电制动器可以满足矿井提升机的制动要求,以消除0.3秒内的制动间隙。比较图中的两条曲线,当电流较大时,正压力增加得更快,达到目标正压的时间更短,这验证了由配件获得的线性关系的准确性。经过一段时间后,曲线显示出慢的向下趋势和逐渐稳定,稳定性稳定性的平均值为32.5kN,误差为1.5%。当电流为2.49Å时,制动力的变化趋势与7.76Å的变化趋势类似,最终稳定的正压力的平均值为5.4%,两者都在10%以内。

缩略图 图12.

正压力变化的曲线。

5 Conclusion

面对深井开采,传统提升系统中液压盘式制动器的响应特性已不能满足超深井提升的需要。然而,目前研制的超高压煤矿制动系统在提高制动响应和系统可靠性方面还存在一些问题。作为备用方案,研究了一种电控制动技术,使制动对象集成为一个实时控制的电控系统。

试验结果表明,制动电流输入与正压输出呈线性关系,螺旋位移输出与制动正压输出呈立方关系,制动电流输入越大,制动力上升越快。当输入电流为7.76Å, 制动间隙可在0.1以内消除 s、 正压在短时间内可达到35kn。制动力稳定后可达到32.5kN,误差1.5%,满足超深矿井的要求。以提升机的盘式制动器(最大正压125kn)为参考对象,提出用4个机电制动器(单个33kn)代替盘式制动器的设计初衷。满足矿井提升机机电制动器最大正压要求,与深井煤智能设备的发展方向高度兼容。

Funding

中国国家重点基础研究项目(批准号:2020YFB1314103),中国安徽大学杰出青年人才计划(批准号:GXYQ201922)、中国环境友好材料与职业健康研究所(芜湖),资助了国家重点研究项目(批准号:51904009)。安徽理工大学(批准号:ALW2020YF17),中国西部绿色与安全煤炭开发国家重点实验室(批准号:SKLCRKF20-14)发展基金,安徽理工大学启动研究基金。

利益冲突

作者宣称没有利益冲突。

Nomenclature

P:油入口

PLC: Programmable Logic Controller

F: Positive pressure

I:电机电流

X:螺钉位移

U:电枢电压

Rad:附加电阻

KM: Additional resistance

E:电动力

Ia: Armature current

Ra: 抵抗性

T: Electromagnetic torque

TL: Load torque

n:速度

Φ: 磁通量

作者贡献声明

概念化,HW.J.和hy.h ;;数据策策,HW.J.和hy.h ;;正式分析,HW.J.和hy.h ;;资金收购,HW.J.和cl.w .;调查,Hy.h,S.W.和hw.x。 methodology, HW.J. and HY.H.; project administration, HW.J.; resources, HW.J. and HW.X.; software, HY.H.; supervision, HW.J. and S.W.; validation, HY.H. and HW.J.; writing −original draft preparation, S H; writing review and editing, HY.H., HW.J. and CL.W.

工具书类

  1. G.F. Wang, H. Wang, H. Ren et al., Smart coal mine 2025 scenario goal and development path, J. Coal Ind.43.,295-305(2018)[谷歌学者]
  2. H T。张,Y.J.Dai,Y.J.Jia,Cine Engineering矿山葫芦盘式制动器设计,ZH。母娘。res。1943年, 212–215 (2012)[谷歌学者]
  3. 问。王,C。张,Q。双,基于AMESim的盘式制动电液比例溢流阀的研究智能系统研究与机电一体化工程国际会议(2015)[谷歌学者]
  4. X.F.王,x.m。肖,X.Y.张,基于Amesim,ADV的电水力比例浮雕动态特性研究。母娘。res。466-467,518-522(2012)[谷歌学者]
  5. M. Ungureanu,N. Ungureanu,矿山葫芦制动材料的磨损强度,Tehničkivjesnik24., 585–589 (2017)[谷歌学者]
  6. M. Kumar, X. Boidin, Y. Desplanques et al., Influence of various metallic fillers in friction materials on hot-spot appearance during stop braking, Wear270., 371–381 (2011)[谷歌学者]
  7. D.王,R。王,J。张,千米深矿井提升机紧急制动时盘式制动器的动态制动特性,高级机械。工程师。12., 1–23 (2020)[谷歌学者]
  8. D. Wang, J. Yin, Z. Zhu, Preparation of high friction brake shoe material and its tribological behaviors during emergency braking in ultra-deep coal mine hoist, Wear45.8, 203391 (2020)[谷歌学者]
  9. Y. Zhang, G. Xu, X. Zhang, Design and research of the disc brake of mine hoists for monitoring the disc spring force and positive brake pressure, Measur. Sci. Technol.30., 25903 (2019)[谷歌学者]
  10. G。徐博士。宋,D。张,矿井提升机盘式制动器故障诊断和正制动压力监测的新型机械设计,高级机械。工程师。11.,1-16(2019)[谷歌学者]
  11. Z.Jiao,X. Zhang,Y. Shang,一种基于高速开关阀的逐丝飞机制动系统,航空航天SCI。技术。10.6, 106177 (2020)[谷歌学者]
  12. J. Deng, K. Hu, B. Lu, Influence of B 4C on oxidation resistance of PSN/borosilicate Glass-B 4C field-based repair coating of C/C aircraft brake materials at 700‑900 °C, Ceram. Int.45., 20860–20872 (2019)[谷歌学者]
  13. C.张,L.张,Q. Zeng,C / Si C复合制动剂的飞机制动期间模拟三维瞬态温度场,母体。des。32.,2590-2595(2011)[谷歌学者]
  14. S.Wolny,在紧急制动条件下安全停止所需的提升距离的制动距离,拱门。分钟。SCI。62., 279–288 (2017)[谷歌学者]
  15. X. Wei,Q. Yin,H. Nie等,基于模糊PID控制器的飞机电气防滑制动系统,具有参数自调节功能,Trans。南京大学。航空。astron。31., 111–118 (2014)[谷歌学者]
  16. A.特伦丁,P. Zanchetta,P. Wheeler,J.Clare,机电执行器中的电力流量分析,用于民用飞机,IET电力电力。5, 48–58 (2011)[谷歌学者]
  17. 是的。Hye,Ryu,M。Ki,电动汽车线控制动系统机电制动的实现,J。韩国Soc。康沃尔工业公司。20.,313-323(2017)[谷歌学者]
  18. L. Chris, M. Chris, G. Malcolm, Control of an electromechanical brake for automotive brake-by-wire systems with an adapted motion control architecture, SAE Technical Paper (2004)[谷歌学者]
  19. G. Park, S. Choi, Clamping force control based on dynamic model estimation for electro-mechanical brakes, J. Automobile Eng.23.2,2000-2013(2018)[谷歌学者]
  20. C.李,C。Manzie,使用机电式线控制动系统的主动制动抖动注意,IEEE-ASME Trans。机械。21., 2964–2976 (2016)[谷歌学者]
  21. M。阿蒂亚,S。哈格,A。卡马尔,采用滑模控制器的线控增强型机电制动系统,J。戴恩。系统。测量。控制138.,041003(2016)[谷歌学者]
  22. B. Sababha, Y. Alqudah, A reconfiguration-based fault-tolerant anti-lock brake-by-wire system, ACM Trans. Embedded Comput. Systems (TECS)17., 1–13 (2018)[谷歌学者]
  23. K. Park, S. Heo, A study on the brake-by-wire system using hardware-in-the-loop simulation, Int. J. Vehicle Des.36., 38–49 (2004)[谷歌学者]
  24. W。中国和美国煤矿安全法规,J。康坦普。亚洲39., 424–439 (2009)[谷歌学者]

引用这篇文章:H.Jin,H. Huo,C.Wang,S. Wang,H. Xu,矿井葫芦,力学和工业机械制动的设计和实验研究yabo亚博22.,36(2021)

所有表格

表格1

Parts parameter table.

表2.

制动参数。

表3

I / O地址。

表4.

电机电流输入和正压输出测试结果。

表5.

Test results of lead screw displacement output and brake pressure output.

All Figures

缩略图 图。1

机电制动器结构图。1.制动盘;2.制动踏板;3.夹块;4.箱体;5.蜗轮;6.滚珠丝杠副;7.步进电机;8.梯形螺钉;9.转矩电机。

In the text
缩略图 图2

机电制动器的设计图。1.线性指南。2.制动胎面。3.滚珠丝杠。4.步进电机。5.扭矩电机。6.支撑板。

In the text
缩略图 图3.

直流扭矩电动机电路图。

In the text
缩略图 图4.

Braking force response curve.

In the text
缩略图 图5.

Brake structure diagram. a. Block brake. b. Schematic diagram of electric braking. c. Hydraulic brake. d. Electro mechanical braking.

In the text
缩略图 图6.

制动器的设计开发过程。

In the text
缩略图 图7.

机电制动实验系统示意图。

In the text
缩略图 图8.

Site photo of electromechanical brake test device. a. Internal control circuit. b. Electro mechanical brake.

In the text
缩略图 图9.

Experiment flow chart.

In the text
缩略图 图10.

Relation curve of motor current input and output positive pressure. a. First trial. b. Second trial. c. Third trial. d. Fourth trial. e. Mean value fitting curve.

In the text
缩略图 图11.

螺杆位移与输出正压的三阶拟合曲线。

In the text
缩略图 图12.

正压力变化的曲线。

In the text

当前使用指标show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

数据对应于2015年之后的Plateform上的用法。在线出版物后48-96小时可用,并在一周日每天更新。

这些指标的初始下载可能需要一段时间。